Finance Use Cases

๐˜๐˜ง ๐˜ ๐˜ฉ๐˜ข๐˜ฅ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ฏ ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ฆ๐˜ญ๐˜ฆ๐˜ค๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ช๐˜ต๐˜บ ๐˜ช๐˜ด,
๐˜'๐˜ฅ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ต๐˜ข๐˜ฌ๐˜ฆ๐˜ฏ ๐˜ข ๐˜ด๐˜ต๐˜ฆ๐˜ฑ, ๐˜จ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ฐ๐˜ถ๐˜ต ๐˜ช๐˜ฏ๐˜ต๐˜ฐ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ณ๐˜ฆ๐˜ฆ๐˜ต,
๐˜Œ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฆ๐˜ฅ ๐˜ข ๐˜ฑ๐˜ฉ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ฃ๐˜ฐ๐˜ฐ๐˜ต๐˜ฉ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฅ๐˜ช๐˜ข๐˜ญ๐˜ฆ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ,
๐˜ˆ๐˜ฏ๐˜ฅ ๐˜ฉ๐˜ฆ๐˜ข๐˜ณ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ท๐˜ฐ๐˜ช๐˜ค๐˜ฆ, ๐˜ท๐˜ฐ๐˜ช๐˜ค๐˜ฆ, ๐˜ท๐˜ฐ๐˜ช๐˜ค๐˜ฆ...
๐˜‰๐˜ถ๐˜ต ๐˜ ๐˜ฅ๐˜ฐ๐˜ฏ'๐˜ต ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ข๐˜ญ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ๐˜ด,
๐˜ ๐˜ฅ๐˜ฐ๐˜ฏ'๐˜ต ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜ต๐˜ฆ๐˜ญ๐˜ฆ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ถ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด,
๐˜ ๐˜ฅ๐˜ฐ๐˜ฏ'๐˜ต ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ ๐˜ธ๐˜ฉ๐˜ฐ ๐˜ญ๐˜ข๐˜ช๐˜ฅ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ฉ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ค๐˜ข๐˜ฃ๐˜ญ๐˜ฆ,
๐˜'๐˜ญ๐˜ญ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฃ๐˜ข๐˜ฃ๐˜ญ๐˜บ ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜ฉ๐˜ฆ๐˜ข๐˜ณ ๐˜บ๐˜ฐ๐˜ถ, ๐˜บ๐˜ฐ๐˜ถ, ๐˜บ๐˜ฐ๐˜ถ...

Over 40 years ago, the Russian rock band Akvarium sang this and explained ๐˜„๐—ต๐˜† ๐˜๐—ต๐—ฒ ๐—ฎ๐—ฑ๐—ผ๐—ฝ๐˜๐—ถ๐—ผ๐—ป ๐—ผ๐—ณ ๐—”๐—œ/๐— ๐—Ÿ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—™๐—ถ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐——๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ถ๐˜€ ๐˜€๐—ผ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ถ๐—ฐ๐˜‚๐—น๐˜.

Finance professionals have a distinct mindset. Even though theyโ€™ve worked in digital environments for over a century and are fluent in numbers, two key obstacles stand in the way of AI/ML integration:

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜€๐˜๐—ถ๐—ฐ ๐—ง๐—ต๐—ถ๐—ป๐—ธ๐—ถ๐—ป๐—ด ๐—™๐—ฒ๐—ฒ๐—น๐˜€ ๐—”๐—น๐—ถ๐—ฒ๐—ป
Finance is built on ๐—ฝ๐—ฟ๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป. Professionals are used to dealing with exact figures from the past and expect the same for the future (budgets, forecasts). Concepts like confidence intervals or probabilistic outcomes are fundamentally foreign to them.
Every machine learning model inherently includes ๐˜‚๐—ป๐—ฐ๐—ฒ๐—ฟ๐˜๐—ฎ๐—ถ๐—ป๐˜๐˜†: results are based on probability, not certainty. To a finance manager, an AI-generated number isnโ€™t โ€œthe number.โ€ So, how should they use it? How should they interpret a fuzzy forecast? Can they trust it? How to ๐—ฏ๐—ฒ๐—น๐—ถ๐—ฒ๐˜ƒ๐—ฒ in the result?ย (Do you see this fuzzy Kandinsky picture - do you trust these blurred circles?)

๐Ÿฎ. ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฐ๐—ฐ๐—ผ๐˜‚๐—ป๐˜๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€ (๐—” ๐—Ÿ๐—ผ๐˜)
Financial models are simple: +, -, %, and the occasional *.

MS Excel is the perfect tool: it keeps everything traceable.
If a CFO asks why a number is what it is, a financial analyst can walk through every formula, cell by cell and explain the exact reason for every figure on the dashboard. Everything can be traced back.

But ML algorithms are significantly more complex. Even the data scientist may struggle to explain how certain weights or features led to a specific outcome. When the result is wrong - and letโ€™s face it, no AI is perfect - then why and where was the error exactly? Perhaps nobody in the company can give an exact answer. Then, whoโ€™s responsible for this mistake? Somebody should be, and the CFO assumes that this is the finance manager who incorrectly used AI software. So they are not ready to be ๐—ฎ๐—ฐ๐—ฐ๐—ผ๐˜‚๐—ป๐˜๐—ฎ๐—ฏ๐—น๐—ฒ for what they have no understanding.


(Do you understand what's there in the Kandinsky picture? Could you then recommend it to your CFO?)

This is the tension. Until we bridge the cultural and conceptual gap between probabilistic models and the deterministic mindset of finance, adoption will remain slow, not for technical reasons, but for human ones.

However, we have a numerous of examples of the successful adoption of AI in Finance. Check them here:

WoCa forecast

P&L forecast

...